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In this paper we investigate flows of an ideal gas with infinite conduct- 
ivity in a magnetic field which is parallel to the velocity of the 
approaching stream. It is shown that there exist two hyperbolic flow 
regimes, one of which occurs at subsonic velocities. In this flow regime, 
shock waves are incline0 upstream. For certain values of the ratio between 
magnetic and hydrodynamic pressures, there exists an elliptic type of 
flow at supersonic velocities. In this regime weak shock waves do not 

occur, but there are strong shock waves, whose angles of inclination start 
fro@ the perpendicular. We work out the simple waves for the hyperbolic 
regimes snd construct the solutions for the problem of flow around bodies, 
in the linearized and second-order approximations. 

1. Shock waves. Let HI be the magnetic field and Vl the velocity 

vector, both parallel ahead of the ahock wave, and let the shock wave 

form the angle o with the direction of these vectors (Fig. I). ‘Then the 

pressure p, density p, velocity V and field H, downstream (index 2) and 

upstream (index 1) of the shock wave are related by the following rela- 

tions [ 1 I : 

the condition for continuity of the normal component of field 

H, = H, sin 5 - H, sin (c - 3) (1.1) 

the condition for continuity of mass flow 

i = piV, sin u = pzV, sin (3 - 9) (4.2) 

the condition for conservation of tangential momentum 

4np, V[ V, cos (a - 9) - Y,cosu] z= H,[H;cos(o -S)-HH,cos~] (1.3) 
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Fig. 1. 

the condition for conservation of normal momentum 

p2+;+g cos2 (3 - 8) = &f $+ + _g cosau 

the condition for conservation of energy 

&.p’+V2__ x Pl I via 
x-l pz 2 x--l Pl (1.5) 

We have made use of the fact that the angles of inclination 8 of the 

vectors H and V after the shock wave are identical, This follows from 

the continuity of the tangential component of the electric field E. In an 

infinitely conducting fluid, E = - (l/c) V x H. In our case, E is zero 

ahead of the shock, and thus it follows that also after the shock 
V x H = 0, and so H is parallel to V. 

From (1.1) and (1.2) it follows that 

Ha Ht 
psv,= 

(1.6) 
PlVl 

Let us consider shock waves of small intensity. Let N o8 Vo, p. and p. 

correspond to the free stream, 

x-axis. Let hx, hy, v*, vy, 

with H, and V. in the direction of the 

p and P, with indices 1 and 2, be small per- 

turbations, corresponding to upstream and downstream of the shock wave.* 

Neglecting the squares of small quantities in (1.1) to (1.51, and re- 

arranging as necessary, we obtain the following relations for a weak 
shock wave: 

l The vectors V and I ahead of the shock may be non-parallel (but nearly 
parallel). 

l * Conditions for the conservation of the ‘tangential component of electric 

f leld. 
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‘izPo2Vo2 - (1 - M2) zf,y 87c’ 
‘/zpoVoa - Ho” / 8x (1.8) 

M”+ XPO , no2 = x 1 
where uO is the angle of inclination of the shock wave of zero intensity, 

a, is the speed of sound of the free stream. ‘Ihe symbol [A] indicates 

lhe flow under consideration has two characteristic non-dimensional 

parameters: the Mach number M and the parameter NO’, which is equal to 

the ratio of magnetic and hydrodynamic pressures. Using these parameters 

we rewrite (1.8) in the form 

tg 00 = + 
M," - N,L(l- M,") -- (M&--l)(Mo”-No2) 

No2= s) (1.9) 

It is evident that for given NO there always exist sufficiently small 

values of M for which the right hand side of (1.9) is imaginary. For 

those values of M, weak shock waves do not exist. For MO = M I = 

4 N,‘/(l + NO21 the numerator in the right-hand side of (1.9’3 changes 

sign and the right-hod side becomes real. 

It follows that for MO1 < MO ( min (1, No) weak shock waves may exist. 

Here, three possibilities present themselves, as depicted in ! the 

hodographs of I* Fig. 2, where the numbers 1, 2, 3 denote, respectively, 

quasi-hyperbolic and fully hyperbolic regimes: 

(a) for NO < 1, the region of existence of shock waves ends at sub- 

sonic velocities, followed, up to MO = 1, by a region in which there are 

no shock waves; for MO ) 1 shock waves again appear (Fig, 2 a 1; 

(b) for NO > 1, the subsonic region in which shock waves exist extends 

to MO = 1, while 111, > 1 up to MO= NO is a region in which weak shock waves 

cannot exist; for M, > NO kreak shock waves again exist fFig: 2 b 1; 

(c) for N,, = 1, both regions of existence of weak discontinuities join 

at M = 1 (Fig. 2 c 1. 

‘Ihe subsonic region in which weak shock waves exist we shall call 

quasi-hyperbolic**, and the corresponding supersonic region fully hyper- 

bolic or, simply, hyperbolic. 

* Added in translation. 

** In what follows. the reason for this name will become clear. 
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As is well known [ 1 1, the pressure in real*, weak shock waves must 

increase. Corresponding to (1.7) and (1.8) in the quasi-hyperbolic regime 

witha,< 1/2x and[vy] >O, wemusthave[u,l >O, andthenthe 

pressure p decreases, i.e. for a real shock wave with u0 < 1/2x the flow 

has to deflect downward, not upward, as ordinarily in supersonic aero- 

dynamics. In the hyperbolic regime with o0 < l/277 real shock waves de- 

f&t the flow up&d. 

Fig. 2. 

Let us denote the angle of inclination of a weak shock wave of non- 

zero intensity by u = u0 + S. Let the flow after the wave (Fig. 11 turn 

through the angle 8. banding relations (l.l)-(1.5) in series of 8 and 

keeping terms of second order, we find 

(3 +x)(1 - M1YN12 + (x + 1) (N12-‘+f12) 

4 [ M1” - N1’ (1 - M,2)] (1 - M12) 
M 

1 
28 (1.10) 

As shown above, in the quasi-hyperbolic regime a deflection of the 

flow and the field to positive angles 8 occurs for shocks with o0 = 1/2x. 

From (1.10) it follows that S > 0, and therefore the shock wave approaches 
the x-axis as 8 increases. Sock waves with angles of inclination loI < 

1/2ff do not exist. In particular, there are no shock waves perpendicular 

to the flow. 

In the hyperbolic regime, positive 8 corresponds to o0 < 1/2n and 

I4 a k)l t as in ordinary gas dynamics. For N > 1 and 14 M ( N there 

evidently exists a normal shock (u = l/2 n 1, but there are no weak shocks. 

Shock waves with angles of inclination 1/2s( u ( R appear here as strong 

shock waves. 

2. The equations of magnetohydrodynamics and their charac- 
teristics. lhe motion of a gas with infinite conductivity in the pre- 

sence of a magnetic field is described by the following system of equa- 
tions 1 1 1 : 

* In which entropy increases. 



96 Af.N. Kogan 

divpV= 0, (V.p)V= - F- &Hxrot H (2.1) 

div H = 0, rot (VxH) = 0 

For the case of plane flow it follows from the last equation that 

V x H - const. Since the flows under consideration are those for which 
V0 11 H, at infinity, then VII H throughout the flow field, since at the 

shock wave the parallelism of these vectors is not disturbed, as shown 

in Article 1. 'Ihus, throughout the flow 

~,H,---V&,=0 (2.2) 

Take the x-axis along a stremnline. lhen V = 0 and, from (2.2) also 

ffY =: 0. We write the continuity equation (2.lJ in the form 

From (2.1) and (2.2) we have 

av,_ J’x =f, _ v x as, 
ay _H,dy----Tar H 

Eliminating d V,/ay from (2.3) we obtain, with (2.4), 

-$Il(~)4 
X 

(2.3) 

(2,4) 

(2.5) 

Thus, H/p V = const along a streamline. This ratio is continuous 
across a shock wave, according to equation (1.6), thus throughout the 

flow we have 

H fi, 

pv = POV, 

633) 

In view of the parallelism of the vectors H and V, equation (2.6) is 

equivalent to two relations: 

(2.7) 

Using these expressions, we can eliminate the magnetic field from the 

equations of motion (2.1). and obtain 

(2.&i) 

(2&b) 

Equations (2.8) together with the continuity equation (2.1) and the 

condition of constancy of entropy along a streamline, 
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constitute a 

unknowns vw, 

(2.9) 

closed system of equations for the determination of the four 
V ya P and p. 

Writing equations (2.8 a 1 and (2.9) in coordinates whose x-axis is 

along a streamline we note that the absolute value of the vector V, the 

pressure p and the density p are related, along a streamline, by the sme 

relations as in ordinary gas dynamics: 

(2.10) 

(2.11) 

I-he Vmax, the maximum flow speed, is a constant for the flow, as 

follows from (1.5). 

‘Ihe change of entropy in shocks is proportional to the cube of the 

pressure jump C 1 1 . ‘lherefore, to second order, f = const, and thus p 

has a one; to-one relation with V, as in ordinary gas dynamics. 

Introducing the usual procedures for finding the characteristics of 

the system of eqnations, we find that plane flows of magnetogasdynamics 

possess two systems of characteristics*, whose angles of inclination oO 
to the streamline are determined by the expressions 

tg u* = rf: 
M2--NNa(l -W) 

(M” - l)(M” - N2) (N=g/s) (2.12) 

‘lhe characteristics corresponding to the upper sign we shall call 

characteristics of the first family, those of the lower sign, the second 
family. Since (2.12) is the sane as (l-91, the characteristics are real 

in those ranges of M and N in which weak shock waves exist. As required, 
the characteristics coincide with the shock waves of vanishing intensity. 

Along these characteristics, the required functions are related by the 

relations : 

* The streamline also appears as a fourth-order characteristic. along 

which the four relations (2. ‘7). (Z.Q), (2.11) hold. 



98 1II.N. Kogan 

where the upper and lower signs correspond with those in (2.12). If the 

entropy is constant throughout the flow field, then (2.13) may be re- 

written in the following form: 

_t(M2-iV2)1tg~,Jd9 f [M2--iv2 (1 -W)]d lnT/' = 0 (2.14) 

From (2.13) and (2.14) it may be seen that, along one and the same 

family of characteristics in the hyperbolic (M> N) and quasi-hyperbolic 

(MC N) regions, the directions of changing velocity and pressure, for 

the same change of 8, are opposite. In the hodograph plane the character- 

istics have the form shown in Fig. 2.* 

In the hyperbolic regime, for N + 0 all the formulas reduce to the 

corresponding formulas of ordinary gas dynamics. 

3. Simple waves. As in ordinary gas dynamics, there exist in each 
hyperbolic regime two types of simple waves: condensation and rarefaction 

waves. 

Every wave maps into a characteristic in the hodograph plane: In 

magnetogasdynamics, the properties of simple waves are different in each 

hyperbolic regime. 

6,~6c6, 6,,>6,6, 

Fig. 3. 

Corresponding to equation (2.14) and Fig. 2, the flows along concave 

and convex walls have the form shown in Figs. 3 and 4. 'lhe behavior of 

the flows near the boundary lines (M = Mel, M = N, etc.) is essentially 

different for N > 1 and N < 1. For N< 1, in the vicinity of the lines 

M- MO1 and M= 1, small changes of angle correspond to large changes of 

* In Fig. 2, characteristics of the first family are shown by dotted 
lines, those of the second family by continuous lines. 
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speed. At the outer boundaries of the hyperbolic regions (M = N and 

M+ m 1, a very large curvature of the streamline is required to change 

the speed. For N > 1, on both boundaries of the quasi-hyperbolic region, 

the magnitude of the velocity vector changes suddenly for a small turn. 

On the other hand, on both boundaries of the fully hyperbolic region, a 

change in the magnitude of the velocity vector requires a large turn. 

Of interest is the case N = 1 (Fig. 5). In this case an expansion for 

example, proceeds up to M = 1 along a characteristic of the first family 

A B (Fig. 2 c 1, and for M > 1 along a characteristic of the second family 

B C. ‘Ihe inclination of characteristics in the physical plane changes 
continuously, going through l/28 at M = 1. 

4. Flow around finite bodies. Assume a body in a flow of gas of 

infinite conductivity having the velocity V,, at infinity, in a magnetic 

field H O, parallel to Vo. We will consider a body thin enough so that if 

the approaching stream belongs, for example, to one of the hyperbolic 
flow regimes, then all portions of the flow are within the boundaries of 

that regime. 

Fig. 4. 

In the fully hyperbolic regime the flow is analogous to supersonic 

flow over a profile (Fig. 6). 

If cubes of the velocity perturbations are neglected, then, as shorn 

above, the flow is isentropic. To this order, changes in a shock wave 
are the same as changes in a simple wave. Therefore the flow around a 

profile can be constructed by Busemann’s method. In the quasi -hyperbolic 

region an analogous solution can be formally constructed (following the 
scheme of Fig. 61, in which condensations are everywhere replaced by 

rarefactions. However, such a flow cannot exist, since in that case the 
entropy would have to decrease in a shock wave. ‘lhe impossibility of such 
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a flow is also evident from other considerations. In the flow which is 

constructed according to Fig. 6, the flow uustream of the first shock is 

undisturbed. 

two types of 

Ihe speed of 

(11 

It is known [ 1-l that in magneiohydrodynamics there exist 

wave, propagating in all directions with two different speeds. 

propagation u of these waves is determined by the equation 

where a0 is the speed of sound in the basic flow and a is the angle of 

inclination of the wave front to the x-axis, along which the vectors V. 
and fI, are directed, in our case. Waves with speeds a0 and Na, evidently 

propagate against the flow (o = l/2 n >. Since in the quasi-hyperbolic 

Fig. 5. 

region M < 1 and M < N, both waves penetrate upstream. As the inclination 

of the wave front decreases, the speed of one of the waves decreases to 

zero as u + 0, while that of the other increases to (NO + llao. For N < 1, 

there is a decrease in the velocity of that family of waves whose speed 

Fig. 6. Fig. 7. 
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is Na, at u = 1/2n. For N > 1, on the other hand, the speed of propaga- 

tion of this family of waves increases as u + 0, while the speed of the 

second family (which has speed a0 at u = 1/2n ) decreases. Thus, one of 

the families always penetrates upstream. 'lhe second family, beginning at 

someo < 1/2~, cannot penetrate upstream. That such a family must exist 

is shown by the appearance of characteristics for M< 1. Evidently, the 

angle o0 is the angle of inclination of the characteristics. 

Thus, in the quasi-hyperbolic regime, disturbances can penetrate up- 

stream. On the other hand, if characteristics of the second family could 

come from the undisturbed flow at upstream infinity, then the uniquely 

possible solution would be the solution constructed according to the 

scheme of Fig. 6, with decreasing entropy. Therefore the characteristics 

have to ruu into a shock wave which runs upstream, as shown in Fig. 7. In 

this case the characteristics running into the undisturbed flow downstream 

of the body are of the first family. 'Ihe whole flow is obtained as by a 

mirror reflection of the usual supersonic flow of ordinary gas dynamics. 

However, there is an important difference between these two flows. In 

supersonic aerodynamics, as well as in fully hyperbolic flows of magneto- 

gasdynamics, the flow ahead of the shock is undisturbed. Thus the flow 

ahead of the bow shock is known, and it is possible, with the method of 

characteristics, to construct the whole flow and shock waves, step by 

step, beginning at the nose of the body. In analogy with that, it is 

natural, in the quasi-hyperbolic region, to try to calculate the flow by 

the method of characteristics, going from the end of the body upstream. 

However, in this case the flow downstream of the trailing-edge shock wave 

is disturbed, due to the change of entropy in the shocks. lherefore, in 

the general case, all parts of the flow are interdependent, and the usual 

method of characteristics does not give a method of constructing the flow. 

In order to emphasize this peculiarity which is characteristic of ellip- 

tical regions, we have called these flows quasi-hyperbolic. 

If we restrict ourselves to the second-order approximation and neglect 

the changes of entropy, then the indicated property of interdependence 

disappears and the solution can be constructed entirely by analogy with 

the eUsemann method; lhe only difference in the given case is that we go 

along characteristics of the first family, from downstream infinity, 

rather than along characteristics of the second family, from upstream in- 

finity. Correspondingly, in the hodograph plane, the whole flow maps into 

a characteristic of the first family, not the second. 

In the case under consideration, the magnetic field 11 is everywhere 

parallel to the velocity vector V, as shown above. Therefore, on the 

boundary of the body the normal component of the magnetic field is equal 

to zero. Inasmuch as there are no magnetic sources inside the body, then 

in accordance with Maxwell's equations the field must be zero inside the 
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body. Thus on the boundary of the body there 

uity in the magnetic field and corresponding 

magnetic field tries to squeeze this current 

is a tangential discontin- 

to it a surface current. The 

to the body, which in fact 
determines the magnetic pressure on the body, H’/~R. ‘Ihis effect is en- 

tirely analogous to the pinch-effect. 

5. Linearized theory. Let the free stream velocity V. be along the 

x-axis, and let the field again by HO at infinity, parallel to the velo- 

city. Let Vz, u * 
field, etc. 

hx, hy, p and p denote the perturbations of velocity, 
Neg ectlng squares of these quantities, from (2.1) and (2.8) I 

we obtain 

(5.1) 

‘Ihe inclination of the characteristics of this systm of equations is 

evidently determined by equation (1.9). Along the characteristics, rela- 
tions (2.14) are katisfied; after linearization these have the form 

+ (M,2 - N,2) 1 tg 30 f di’y -{- [iw,z - Iv”? (1 - M,2)] &I, -= 0 

lhe full pressure coefficient is 

(5.2) 

jvn L-; 
P + Pm 
m-=-z 

MO" -NN,"(l -M,2) vJc 

M," vo 
(5.3) 

where p = - 
l/4 Hohx = 

p~V*u~ is the perturbation hydrodynamic pressure and p, = 
H; (1 ---M0*)vz,‘4~ V. is the magnetic pressure. 

Let us bring (5.1) into a form which is conventional in the linearized 

theory of compressible fluid flow. For this, we introduce the velocity 

V.- x- 
M,,a - NoZ (1 - M,“) v, 

M,a - N," (5.4) 

‘Ihen instead of (5.1) we obtain 

(a - Ma2) (M,” - No2) av,’ ara 

M,” - No2 (1 - M,“) 
_+f$Y._q f&..+-) 

ax 
(5.5)s 

lhe coefficient of ~3 u.~ */d x is evidently positive in elliptic regions 

and negative in hyperbolic regions. Grrespondingly, the system (5.5) 

reduces either to Laplace’s equation or to the wave equation. 

In accordance with (5.4)-(5.51, in the first elliptic, subsonic region 

(M < MOO,) the character of the propagation of velocity will be the same 
as in an ideal incanpressible fluid. However, according to (5.31, the 

regions of rarefaction are replaced by regions of condensation. The region 
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which has all the properties of subsonic flows turns out to be the second 

subsonic elliptic zone, which exists for N< M( 1. For N-, 0 this region 

spreads and encanpasses the whole subsonic regime. According to (5.4)- 

(5.5) the picture of the velocities in the elliptic supersonic region, 

and according to (5.3) the picture of the pressures also, is opposite to 

the picture to which we are accustomed in ideal incompressible flow. Here, 

both the velocity perturbations and the pressure perturbations have the 

opposite sign. 

In the hyperbolic regions (Fig. 81, going from infinity along charac- 

teristics of the second family for M> 1 and along characteristics of the 

first family for M< 1, we obtain, corresponding to (5.2), the expression 

ux Mo” - No” 

K= -3 
(MO2 - 1) [M,2 - No2 (1 - Mo2)] 

It follows that for this case 

(MO2 - No2) [M,” -N,* (I - M,“)] 

Mo2-1 

15.6) 

(5.7) 

'lhis expression differs only by a factor from the usual expression 

p= ze/dM,* - 1, of supemonic aerodynamics. 

Fig. 8. 

From here it follows that in the case under consideration with MO < 1 

there exist flows (for MO1 < MO < min (NO, l)), for which D'Alembert's 

paradox is not fulfilled. In the elliptic regime, on the other hand, the 

paradox does occur, at least within the linearized theory*. Therefore, 

for MO = 1 it is always possible to choose a magnetic field HO such that 

the drag of the body becomes zero. & the other hand, for M< 1 it is 

possible to choose a field such that a wave drag appears on the body. 

'lhese possibilities do not exist in ordinary aerodynamics. 

l With finite disturbances in the elliptic zones, strong shock waves may 

appear (cf. Art. 1). 



104 M.N. Kogan 

6. Three-dimensional flow. 'lhe plane flows discussed above are 
not plane in the strict sense of the mrd, since the currents which 

appear are perpendicular to the plane of the flow. If in any part of a 

three-dimensional flow (in which currents are closed) the variations of 

the flow and field parameters in the z-direction are small compared to 

variations in the xy-plane, then the flow in that plane is considered to 

be plane. 'lhe flow at a shock wave is by its very nature plane [ 11, 
since the vectors V and 11 before and after the shock and the normal to 
the 

are 

the 

wave n lie in one plane. Ih ere ore f the relations in the shock waves 

the same as those given above, if the angles CT and 8 are measured in 

plane passing through the vectors V, H and n. 

Fig. 9. 

If the vectors V and H are parallel ahead of a three-dimensional 
shock wave, then they are parallel after it. Using this property and 

(2.4) we find that V[lIi in the whole three-dimensional flow if these 
vectors are parallel at infinity. It is easy to show, by the usual 

methods, that for those relationships between V and Ii for which charac- 

teristics exist in plane flow, there exist in the three-dimensional case 

characteristic surfaces and cones whose half-angle is determined by ex- 

pression (2.121. 

Let us consider the flow around a body of revolution, with the vectors 

VO and fI, at infinity parallel to its axis. lhe character of the flow 

around the body in each of the flow regimes considered in article 4 will 

be the same as in the plane case. 

A peculiarity appears in the quasi-hyperbolic region. Here, just as 

in the plane case, the flow has the character shown in Fig. 7. 

In ordinary supersonic aerodynamics, one of the few exact solutions 

is for conical flow over a circular cone with an attached bow wave. In 

the case under consideration an analogous flow is obtained for an in- 

finite reverse (trailing edge) cone (Fig. 9). However, here there is a 

decreased pressure on the cone surface, and the pressure increases as 

one goes away from the cone toward the shock. 
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In supersonic aerodynamics, if a finite body has a conical nose, then 

the flow around that nose is the same as over an infinite cone. In the 

quasi-hyperbolic case the flow around a conical tail will not be conical 

in general, due to the changes of entropy in the bow and tail shock waves. 

If the changes of entropy are neglected (i.e. in the linearized and 

second-order approximations) then the corrputation of the flow is analogous 

to that for ordinary supersonic flow around an axisynzaetric body. &t here 

the computation begins from the tail end of the body, as though there were 

a reverse flow over the body. 

Let us consider the flow around a body of revolution in the linearized 

approximation. In cylindrical coordinates the equations of motion have the 

form: 

(6.1) 
[&f,2 - N,2(1 -M,Z$Z? + (N,z-&?)~ = 0 

where vX and vr are velocity perturbations in the x- and r-directions. 

Making the substitutions 

5 = - 21, r.=rI, rx= 
No2 - MO2 

Mo” _ No2 (1 _ &I,“) ‘k* f r, = q.* 

we obtain 

lhis system is identical with the corresponding system of equations of 

supersonic aerodynamics. The solution of this system for a slender body 

has the foxm 

(6.3) 

where S is the cross-sectional area of the body, and the integration 

proceeds along xi (i.e. from the tail toward the nose of the body). As 

might have been expected, there is a rarefaction on the conical tail 

portion of the body. 

It is known that in supersonic flow of a non-conducting gas there is 

a reduction of pressure on the tail portion of a body of revolution which 

is pointed at both ends. At the very tail there appears a subsonic zone, 

and the tail wave actually begins at some distance from the tail. In 
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the quasi-hyperbolic case an analogous flow occurs at the nose portion of 

the body. 

Using the analogy with ordinary aerodynamics, it would be possible to 

construct a number of exact solutions and indicate the special properties 

of those or other flows. However, we have attempted here to indicate 

mainly those properties of magnetohydrodynamic flows which do not occur 

in ordinary aerodynamics. 

In the present paper we have not considered the important class of 

internal flows in plane and axisymmetric channels (nozzles, diffusers, 

etc.) in a longitudinal magnetic field. To this question, and to the 

analysis of a more general class of flows with non-parallel velocity 

vector and magnetic field, we shall devote separate fnVSStigatiOnS. 
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